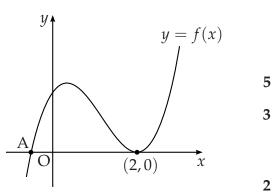
remainder theorm


[SQA]	1.	<i>(a)</i>	Given that $x + 2$ is a factor of $2x^3 + x^2 + kx + 2$, find the value of k .
-------	----	------------	---

(b) Hence solve the equation $2x^3 + x^2 + kx + 2 = 0$ when k takes this value.

3 2

Marks Level Calc. Content U2 OC1 Part Answer k = -53 С CN A21 2001 P2 Q1 *(a)* 2 $x = -2, \frac{1}{2}, 1$ *(b)* С CN A22 • $f(-2) = 2(-2)^3 + \cdots$ synth division \bullet^1 ss: use or •² $2(-2)^3 + (-2)^2 - 2k + 2$ *f*(evaluation) •² pd: process • k = -5•³ pd: process • $4^{2} 2x^{2} - 3x + 1$ or $2x^{2} + 3x - 2$ or •⁴ ss: find a quadratic factor
•⁵ pd: process $x^2 + x - 2$ •⁵ (2x-1)(x-1) or (2x-1)(x+2) or (x+2)(x-1)and $x = -2, \frac{1}{2}, 1$

- [SQA] 2. The diagram shows part of the graph of the curve with equation $y = 2x^3 7x^2 + 4x + 4$.
 - (*a*) Find the *x*-coordinate of the maximum turning point.
 - (b) Factorise $2x^3 7x^2 + 4x + 4$.
 - (c) State the coordinates of the point A and hence find the values of x for which $2x^3 - 7x^2 + 4x + 4 < 0$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	5	С	NC	C8	$x = \frac{1}{3}$	2002 P2 Q3
(b)	3	С	NC	A21	(x-2)(2x+1)(x-2)	
(C)	2	С	NC	A6	A($-\frac{1}{2}$, 0), $x < -\frac{1}{2}$	
•2 •3 •4 •5 •6 •7 •8 •9	pd: star pd: con ss: stra division ic: extr	erentiate ow to set it solving iplete so ategy fo cact quae iplete th erpret th	e deriva g proces olving p or cubic dratic fa de cubic e factor	tive to zero ss of equation process , e.g. synth. actor factorisation s	• ¹ $f'(x) =$ • ² $6x^2 - 14x + 4$ • ³ $6x^2 - 14x + 4 = 0$ • ⁴ $(3x - 1)(x - 2)$ • ⁵ $x = \frac{1}{3}$ ··· 2x ² - 3x - 2 • ⁸ $(x - 2)(2x + 1)(x - 2)$ • ⁹ $A(-\frac{1}{2}, 0)$ • ¹⁰ $x < -\frac{1}{2}$	

3. Functions f, g and h are defined on the set of real numbers by

• $f(x) = x^3 - 1$	
• $g(x) = 3x + 1$	
• $h(x) = 4x - 5$.	

- (a) Find g(f(x)).
- (b) Show that $g(f(x)) + xh(x) = 3x^3 + 4x^2 5x 2$. 1
- (c) (i) Show that (x − 1) is a factor of 3x³ + 4x² − 5x − 2.
 (ii) Factorise 3x³ + 4x² − 5x − 2 fully.

(*d*) Hence solve
$$g(f(x)) + xh(x) = 0$$
.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
(<i>a</i>)	2	C	CN	A4	$3(x^3-1)+1$	2011 P2 Q2
(b)	1	С	CN	A6	proof	~
(C)	5	С	CN	A21	(x-1)(3x+1)(x+2)	
<i>(d)</i>	1	С	CN	A22	$-2, -\frac{1}{3}, 1$	
•2	ic: inte ic: con ic: sub	nplete p	rocess	plete	• ¹ $g(x^3 - 1)$ • ² $3(x^3 - 1) + 1$ • ³ $3(x^3 - 1) + 1 + x(4x - 5)$ $= 3x^3 + 4x^2 - 5x - 2$	
• ⁵ •6 •7 • ⁸	ss: knc pd: con ic: stat ic: finc pd: fact ic: inte (d)	nplete ev e conclu l quadra corise co	valuatio Ision Itic facto mpletel	or	• ⁴ evaluating at $x = 1$ • ⁵ $3+4-5-2=0$ • ⁶ $(x-1)$ is a factor • ⁷ $(x-1)(2x^2+7x+2)$ • ⁸ $(x-1)(3x+1)(x+2)$ • ⁹ $-2, -\frac{1}{3}, 1$	

5

- 4. (*a*) (i) Show that (x 1) is a factor of f(x) = 2x³ + x² 8x + 5.
 (ii) Hence factorise f(x) fully.
 - (b) Solve $2x^3 + x^2 8x + 5 = 0$.
 - (c) The line with equation y = 2x 3 is a tangent to the curve with equation $y = 2x^3 + x^2 6x + 2$ at the point G. Find the coordinates of G.
 - (*d*) This tangent meets the curve again at the point H.

Write down the coordinates of H.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
(<i>a</i>)	5	C	CN	A21	(x-1)(x-1)(2x+5)	2010 P1 Q22
(b)	1	C	CN	A22	$\frac{(x-1)(x-1)(2x+3)}{x=1,-\frac{5}{2}}$	
(C)	5	С	CN	A23	(1,-1)	
(<i>d</i>)	1	С	CN	A23	$(-\frac{5}{2}, -8)$	1
•2 •3 •4 •5 •6 •7 •8 •9 •10	ss: kno ic: con ic: stat pd: find pd: fact ic: stat ss: set ic: exp ss: con ic: ide pd: eva	nplete ev ce conclud d quadra corise co ce solutio $y_{curve} =$ press in son npare with ntify x_G	valuatio usion ntic facto mpletel ons Y _{line} standarc ith (a) o	or y	•1 evaluating at $x = 1$ •2 $2+1-8+5=0$ •3 $(x-1)$ is a factor •4 $(x-1)(2x^2+3x-5)$ •5 $(x-1)(x-1)(2x+5)$ •6 $x = 1$ and $x = -\frac{5}{2}$ •7 $2x^3 + x^2 - 6x + 2 = 2x - $ •8 $2x^3 + x^2 - 8x + 5 = 0$ •9 $(x-1)(x-1)(2x+5) = $ •10 $x = 1$ •11 $y = -1$	
•12	pd: stat	e solutio	on		• ¹² $(-\frac{5}{2},-8)$	

[SQA] 5. Factorise fully $2x^3 + 5x^2 - 4x - 3$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	4	С	NC	A21		1989 P1 Q2
• ² 9	strat: mak first linear quadratic f other linea (x - 1)(2x +	factor factor r factors	livisions	or 2 trial evaluations	3	

4

5

1

1

[SQA] 6. (a) Show that x = 2 is a root of the equation $2x^3 + x^2 - 13x + 6 = 0$.

(b) Hence find the other roots.

Part	Marks	Level	Calc.	Content			Ansv	wer			U2 OC1
<i>(a)</i>	1	С	NC	A21							1999 P1 Q1
(b)	3	С	NC	A21							
• ¹ f	(2) = 16 + 4 or	1-26+6	= 0		•2	2	2	1 4	-13 10	6 -6	
	he appeara of the 3rd l				• ³ •4	$2x^2$ -3, $\frac{1}{2}$	2 +5x- 12	-3	-3	0	

[SQA] 7. Find *p* if (x + 3) is a factor of $x^3 - x^2 + px + 15$.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	3	С	CN	A21		1990 P1 Q1
•2	strat: e.g. f(-3) = 0 p = -7	find <i>f</i> (-3))			

[SQA] 8. When $f(x) = 2x^4 - x^3 + px^2 + qx + 12$ is divided by (x - 2), the remainder is 114. One factor of f(x) is (x + 1).

Find the values of p and q.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	5	С	CN	A21		1991 P1 Q6
• ² f(• ³ 4) • ⁴ p	(2) = 114 (-1) = 0 p + 2q = 78 -q = -15 = 8, q = 23					

5

1 3

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	3	С	CN	A21		1992 P1 Q3
•2	f(2) = 8 + 4 $f(2) = 0$ $k = 3$	4k - 8 - 12	2	•1 •2 •3	correct use of division remainder = $4k - 12$ k = 3	

[SQA] 10. One root of the equation $2x^3 - 3x^2 + px + 30 = 0$ is -3. Find the value of p and the other roots.

Part	Marks	Level	Calc.	Content	Ansv	ver				U2 OC1
	4	С	NC	A21						1993 P1 Q7
-		– 27 – 3p	+30 or	synth. division	e.g.	-3	2	3 6		30 -3 <i>p</i> -81
	y = -17 $2x^2 - 9x + 2$	10				and	2 -3p	-9 -51=	100	-3p-51
•4 2	. <u>5</u>									

[SQA] 11. (a) Show that
$$(x-3)$$
 is a factor of $f(x)$ where $f(x) = 2x^3 + 3x^2 - 23x - 12$.

(b) Hence express f(x) in its fully factorised form.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1				
<i>(a)</i>	2	С	NC	A21		1995 P1 Q2				
(b)	2	С	NC	A21						
• $f(3) = 2 \times 3^3 + 3 \times 3^2 - 23 \times 3 - 12$ or equivalent division										
•2	= 0									
•3										
•4	(x-3)(2x+1)(x+4)									

4

2

12. Express $x^4 - x$ in its fully factorised form. [SQA]

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
	4	С	NC	A21		1996 P1 Q7
• ² • ³	$x(x^3-1)$ synthetic c linear factor $x(x-1)(x^2)$	$\operatorname{or} = (x - 1)$	1,1577	OR (k)	synthetic division or eval. $f(k)$ linear factor = $(x-1)$ cubic factor = $(x^3 + x^2 + x)$ $x(x-1)(x^2 + x + 1)$	

13. (a) Find a real root of the equation $2x^3 - 3x^2 + 2x - 8 = 0$. [SQA] (b) Show algebraically that there are no other real roots.

Part	Marks	Level	Calc.	Content		Answer	U2 OC1
(<i>a</i>)	2	С	NC	A21			1997 P1 Q5
(b)	3	С	NC	A21			
12	• ¹ looking for $f(x) = \dots = 0$ • ² $x = 2$ explicitly stated					$4x^2 + x + 4$ $x^2 - 4ac = 1 - 4 \times 2 \times 4$	
				• ⁵ b	$e^2 - 4ac < 0$ means no real roots		

14. Express $x^3 - 4x^2 - 7x + 10$ in its fully factorised form. [SQA]

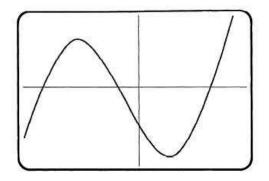
Part	Marks	Level Calc. Content		Ans	wer	U2 OC1	
	4	С	NC	A21			1998 P1 Q2
	evaluating find 1 valu	1.574 (SE)	Contraction and	er by any method	•3	quad factor e.g. $x^2 - 3x - 1$	0
	e.g. f(1) or	f(-2) or	f(5)		•*	(x-1)(x+2)(x-5)	

4

2

[SQA] 15.

- (*a*) The function *f* is defined by $f(x) = x^3 2x^2 5x + 6$. The function *g* is defined by g(x) = x - 1. Show that $f(g(x)) = x^3 - 5x^2 + 2x + 8$.
- (*b*) Factorise fully f(g(x)).
- (c) The function k is such that $k(x) = \frac{1}{f(g(x))}$.


For what values of *x* is the function *k* not defined?

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	4	С	NC	A4		1990 P2 Q6
(b)	3	С	NC	A21		
(C)	2	С	NC	A1		
(a)	• ¹ f(g(:	f(x - f(x - x)) = f(x - x)	- 1)			
	• ² (x-	v^3 γ	1)2 5/			
	• ³ (x-					
	•4 -2x ²	$^{2} + 4x - 2$	-5x + 5	+6 and comple	ting argument	
	-		3			
(b)	• ⁵ first	"0" e.g.	2	1 -5 2 8 2 -6 -8		
				1 -3 -4 0		
	• $x^2 - x^2 - x^$	3x - 4 =	(x+1)(x + 1)(x	-4)		
	• ⁷ (x-	2)(x+1)(r-4			
(c)	• ⁸ den	ominator	r(=(x-2))	$(x+1)(x-4) \neq 0$	0	
			1 100 0			
	•9 -1	2, 4				

3

4

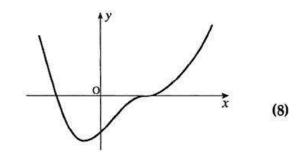
[SQA] 16. The diagram shows part of the graph of the curve with equation $f(x) = x^3 + x^2 - 16x - 16$.

(a)	Factorise $f(x)$.	(3)
(b)	Write down the co-ordinates of the four points where the curve crosses	1723
	the x and y axes.	(2)
(a)	Find the turning points and justify their nature	(6)

(c) Find the turning points and justify their nature.

Part	Marks	Level	Calc.	Conte	nt	Answer	U2 OC1				
<i>(a)</i>	3	С	NC	A21			1992 P2 Q1				
<i>(b)</i>	2	С	NC	A6							
(C)	6	С	NC	C8							
	• ² corre		tor g quadra x – 4)(x +		r						
(b)	 4 For all 3 points on <i>x</i>-axis 5 (0,-16) 										
(c)	• ⁶ $f'(x)$ • ⁷ use	f'(x) = 0									
	• ⁸ $x = 2$, and		(14.8)							
	10[$-\frac{8}{3}^{-}$	$-\frac{8}{3}$ $-\frac{8}{3}$	3 ⁺ 2 ⁻	2 2+						
	• ¹⁰	r) +	0 -		0 +						

- [SQA] 17. The graph of the curve with equation $y = 2x^3 + x^2 13x + a$ crosses the *x*-axis at the point (2,0).
 - (a) Find the value of *a* and hence write down the coordinates of the point at which this curve crosses the *y*-axis.(3)


(4)

(*b*) Find algebraically the coordinates of the other points at which the curve crosses the *x*-axis.

Part	Marks	Level	Calc.	Content		Answer	U2 OC1			
(a)	3	С	NC	A21			1994 P2 Q1			
(b)	4	С	NC	A21						
(a) • ¹ strategy										
	eg	2	2	1	-13	u				
				4	10	-6				
			2	5	-3	0				
	or	f	2) = 0 = 1	6+4-26+4	2					
	$\bullet^2 a =$	6								
	• ³ (0,0	5)								
(b)	• ⁴ 2x ²	+5x-3								
	• ⁵ (x-	- 3)(2x - 1	l)							
	• ⁵ $(x + \frac{6}{x})^{-3}$	$-3, \frac{1}{2}$								
	7 10	,0), $(\frac{1}{2}, 0)$	a.							

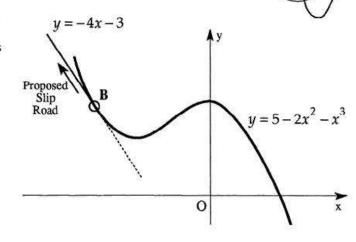
18. The function *f*, whose incomplete graph [SQA] is shown in the diagram, is defined by $f(x) = x^4 - 2x^3 + 2x - 1.$

Find the coordinates of the stationary points and justify their nature.

Part 1	Marks	Level	Calc.	Content	Answer	U2 OC1
	8	С	CN	A21, C8		1993 P2 Q1

- .1 for knowing to differentiate
- $f'(x) = 4x^3 6x^2 + 2$.2
- .3
- for putting f'(x) = 0for factorising **or** checking zeros .4
- .5 $x = -\frac{1}{2}, x = 1$

•⁶
$$y = -\frac{27}{16}, y = 0$$

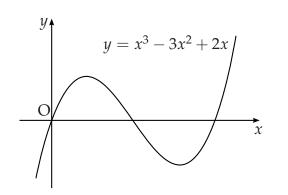

.7 completed nature table

x	$< -\frac{1}{2}$	$-\frac{1}{2}$	$> -\frac{1}{2}$	<1	1	>1
f'(x)	-ve	0	+ve	+ve	0	+ve
	1		1	1		1

•⁸ (1,0) is pt. of inflexion,
$$\left(-\frac{1}{2}, -1\frac{11}{16}\right)$$
 is min t.p.

 [SQA] 19. The diagram shows the plans for a proposed new racing circuit. The designer wishes to introduce a slip road at B for cars wishing to exit from the circuit to go into the pits. The designer needs to ensure that the two sections of road touch at B in order that drivers may drive straight on when they leave the circuit.

Relative to appropriate axes, the part of the circuit circled above is shown below. This part of the circuit is represented by a curve with equation $y = 5 - 2x^2 - x^3$ and the proposed slip road is represented by a straight line with equation y = -4x - 3.


- (a) Calculate the coordinates of B.
- (b) Justify the designer's decision that this direction for the slip road does allow drivers to go straight on.

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	7	С	NC	A23, A21		1993 P2 Q7
(<i>b</i>)	1	A/B	NC	A24		
	x^2 re-ar x^3 strate x^4 first 1 x^5 quad x^6 $x = -$	egy for so linear fac ratic fact	rubic Ilving cu tor or	. ""= 0		
(b)	• ⁸ doubl	e root ⇒	tangen	cy or $y'(-2) = -4$	= gradient of line	

(7)

(1)

- [SQA] 20. The diagram shows a sketch of the graph of $y = x^3 3x^2 + 2x$.
 - (*a*) Find the equation of the tangent to this curve at the point where x = 1.
 - (*b*) The tangent at the point (2,0) has equation y = 2x 4. Find the coordinates of the point where this tangent meets the curve again.

5

Part	Marks	Level	Calc.	Content	Answer	U2 OC1
<i>(a)</i>	5	С	CN	C5	x + y = 1	2000 P2 Q1
<i>(b)</i>	5	С	CN	A23, A22, A21	(-1, -6)	
•2 •3 •4 •5 •6 •7 •8 •9	ss: kno pd: diff ss: kno ic: stat ss: equ pd: arra ss: kno pd: pro ic: inte	erentiate ow that g ow that g e equ. o ate equa ange in s ow how cess	e correc gradient /-coord f line ations standard	tly f = f'(1) f = f(1) d form cubic	• ¹ $y' = \dots$ • ² $3x^2 - 6x + 2$ • ³ $y'(1) = -1$ • ⁴ $y(1) = 0$ • ⁵ $y - 0 = -1(x - 1)$ • ⁶ $2x - 4 = x^3 - 3x^2 + 2x$ • ⁷ $x^3 - 3x^2 + 4 = 0$ … 1 -3 0 • ⁸ … • ⁹ identify $x = -1$ from wor • ¹⁰ $(-1, -6)$	•••

[SQA] 21.

(a) (i) Show that x = 1 is a root of x³ + 8x² + 11x - 20 = 0.
(ii) Hence factorise x³ + 8x² + 11x - 20 fully.

(b) Solve $\log_2(x+3) + \log_2(x^2+5x-4) = 3$.

<u> </u>			~ 1	-	
Part	Marks	Level	Calc.	Content	Answer U3 OC3
<i>(a)</i>	4	С	CN	A21	(x-1)(x+4)(x+5) 2009 P2 Q3
<i>(b)</i>	5	В	CN	A32	x = 1
•2 •3 •4 •5 •6 •7 •8	ic: com pd: fact ss: use ss: k exponer	$a \Rightarrow a$ is to find aplete que corise ful log law now to trial form te cubic ve cubic	a root l quadra uadratio lly s o & n in stano	atic factor cfactor convert to dard form	• ¹ $f(1) = 1 + 8 + 11 - 20 = 0$ so $x = 1$ is a root • ² $(x - 1)(x^2 \cdots$ • ³ $(x - 1)(x^2 + 9x + 20)$ • ⁴ $(x - 1)(x + 4)(x + 5)$ • ⁵ $\log_2((x + 3)(x^2 + 5x - 4))$ • ⁶ $(x + 3)(x^2 + 5x - 4) = 2^3$ • ⁷ $x^3 + 8x^2 + 11x - 20 = 0$ • ⁸ $x = 1$ or $x = -4$ or $x = -5$ • ⁹ $x = 1$ only

[END OF QUESTIONS]

4